Home
Class 11
MATHS
" Example "2" Prove that "2^(n)>n" for a...

" Example "2" Prove that "2^(n)>n" for all positive integers "n.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2^(n) gt n for all positive integers n.

Prove that 2^(n) gt n for all positive integers n.

Prove that 2^(n) gt n for all positive integers n.

Prove that quad 2^(n)>n for all positive integers n.

Prove that 2^n gt n for all positive integers n.

Prove that 2^n gt n for all positive integtrs n.

Prove that (n!)^(2)

If A=[1101], prove that A^(n)=[1n01] for all positive integers n.

Prove that (n !)^2 < n^n(n !)<(2n)! for all positive integers n

Using mathematical induction prove that d/(dx)(x^n)=n x^(n-1) for all positive integers n.