Home
Class 12
MATHS
[" Let "A=[[cos alpha,-sin alpha],[sin a...

[" Let "A=[[cos alpha,-sin alpha],[sin alpha,cos alpha]]" and "B=[[cos2 beta,sin2 beta],[sin2 beta,-cos2 beta]]],[" where "0

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(cos alpha, sin alpha),(sin alpha, cos alpha)] and B = [(cos beta, sin beta),(sin beta, cos beta)] show that AB = BA

If A=[(cos^(2) alpha, cos alpha sin alpha),(cos alpha sin alpha,sin^(2)alpha)] and B=[(cos^(2) beta, cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is the null matrix then alpha-beta is

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

If alpha-beta=(2n+1)(pi)/2, n epsilon Z then [(cos^(2) alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)][(cos^(2) beta, cos beta sin beta),(cos beta sin beta, sin^(2) beta)]=

If A=((cos^(2)alpha , cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)) and B=((cos^(2)beta , cos betasin beta),(cosbeta sin beta,sin^(2)beta)) are two matrices such that the product AB is the null matrix then alpha - beta =

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]