Home
Class 11
MATHS
cos[2sin^(-1)sqrt((1-x)/(2))]=...

cos[2sin^(-1)sqrt((1-x)/(2))]=

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Prove that cos^-1x=2sin^-1sqrt((1-x)/2)

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

sin^(2)(cos^(-1)x)+cos^(2)(sin^(-1)(sqrt(1-x^(2)))) = ________ (0ltxlt1)

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)