Home
Class 12
MATHS
Prove the orthogonal matrices of order t...

Prove the orthogonal matrices of order two are of the form `[(cos theta,-sin theta),(sin theta,cos theta)]` or `[(cos theta,sin theta),(sin theta,-cos theta)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

(cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

Verify that [(cos theta, sin theta),(-sin theta, cos theta)] and [(cos theta, - sin theta),(sin theta, cos theta)] are inverse of each other.

(sin theta-cos theta+1)/(sin theta+cos theta-1)=(1+sin theta)/(cos theta)

(1+cos theta+sin theta)/(1+cos theta-sin theta)=(1+sin theta)/(cos theta)

Prove (cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

Simplify : cos theta[(cos theta,sin theta),(-sin theta,cos theta)]=sin theta[(sin theta,-cos theta),(cos theta,sin theta)]

Simplify cos theta[(cos theta,sin theta),(-sin theta,cos theta)]+sin theta[(sin theta,-cos theta),(cos theta,sin theta)]

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta