Home
Class 12
MATHS
The line tangent to the curves y^3-x^2y+...

The line tangent to the curves `y^3-x^2y+5y-2x=0` and `x^2-x^3y^2+5x+2y=0` at the origin intersect at an angle `theta` equal to `pi/6` (b) `pi/4` (c) `pi/3` (d) `pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The line tangent to the curves y^3-x^2y+5y-2x=0 and x^2-x^3y^2+5x+2y=0 at the origin intersect at an angle theta equal to (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2

The line tangent to the curves y^3-x^2y+5y-2x=0 and x^2-x^3y^2+5x+2y=0 at the origin intersect at an angle theta equal to (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2

The line tangent to the curves y^3-x^2y+5y-2x=0 and x^2-x^3y^2+5x+2y=0 at the origin intersect at an angle theta equal to (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2

The line tangent to the curves y^(3)-x^(2)y+5y-2x=0 and x^(2)-x^(3)y^(2)+5x+2y=0 at the origin intersect at an angle theta equal to (pi)/(6) (b) (pi)/(4) (c) (pi)/(3) (d) (pi)/(2)

If the line xcostheta=2 is the equation of a transverse common tangent to the circles x^2+y^2=4 and x^2+y^2-6sqrt(3)x-6y+20=0 , then the value of theta is (5pi)/6 (b) (2pi)/3 (c) pi/3 (d) pi/6

If the line x cos theta+y sin theta=2 is the equation of a transverse common tangent to the circles x^(2)+y^(2)=4 and x^(2)+y^(2)=6sqrt(3)x-6y+20=0, then the value of theta is (5 pi)/(6) (b) (2 pi)/(3)( c) (pi)/(3)(d)(pi)/(6)

The angle between the tangents to the parabola y^2=4a x at the points where it intersects with the line x-y-a=0 is (a) pi/3 (b) pi/4 (c) pi (d) pi/2

The angle between the tangents to the parabola y^2=4a x at the points where it intersects with the line x-y-a=0 is (a) pi/3 (b) pi/4 (c) pi (d) pi/2

The area bounded by the curves x^2+y^2=1,x^2+y^2=4 and the pair of lines sqrt3 x^2+sqrt3 y^2=4xy , in the first quadrant is (1) pi/2 (2) pi/6 (3) pi/4 (4) pi/3