Home
Class 11
MATHS
If ^n C3+^n C4>^(n+1)C3 , then a. n >6...

If `^n C_3+^n C_4>^(n+1)C_3` , then a. `n >6` b. `n >7` c. `n<6` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If ""^(n+1)C_(3)=4""^(n)C_(2) then n=

If \ ^(n+1)C_3=2.\ \ ^n C_2\ t h e n= 3 b. 4 c. 6 d. 5

If ""^(n+1)C_(3)=4(""^(n)C_(2)) , then n is equal to

If C(n+1,3)=4C(n,2) then n=

Prove that "^(n-1)C_3+ ^(n-1)C_4 > ^nC_3 if n >7.

If ^(n+1)C_(3)=2.quad ^(n)C_(2) then =3 b.4c.6d.5

""^(n-1)C_3+""^(n-1)C_4 gt ""^(n)C_3 if