Home
Class 12
MATHS
y = sin (m Sin ^(-1)x ) implies ( 1- x ^...

`y = sin (m Sin ^(-1)x ) implies ( 1- x ^(2)) y _(2) - xy _(1) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sin (7 Sin ^(-1) x) then (1-x ^(2)) y _(2) - xy _(1)=

y = Sin ^(-1) x implies ( 1- x ^(2)) (d ^(2) y)/(dx ^(2)) =

If y = e ^(Sin^(-1)x ) then (1 - x ^(2)) y _(2) - xy_(1) -y=

If y = (sin ^(-1) x ) ^(2) then show that (1- x ^(2)) y _(2) - xy_(1) = 2.

If y = sin(m sin^(-1)x) , then (1-x^(2))y_(2) - xy_(1) is equal to (Here, y_(n) denotes (d^(n)y)/(dx^(n)) )

If y = e^(sin^ [-1] x), then (1 - x^(2))y_(2) - xy_(1) =

If y=(sin^(-1)x)^(2)," then "(1-x^(2))y_(2)-xy_(1)=

If y = sin (m sin^(-1) x), prove that (1 - x^2)y_2 -xy_1 + m^2 y = 0

y = e^(m sin^(-1)x), prove that (1 - x^2) y_2 - xy_1 = m^2y