Home
Class 12
MATHS
समीकरण x^(y) = e^(x - y) पर विचार की...

समीकरण `x^(y) = e^(x - y)` पर विचार कीजिए -
`x = 1` पर `(d^(2)y)/(dx^(2))` किसके बराबर है ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y = x+e^(x) , then (d^(2)y)/(dx^(2)) is equal to

If y = e ^(a cos ^(-1)x) , - 1 le x le 1 , show that (1 - x^(2)) ( d^(2) y)/( dx^(2)) - x ( dy)/( dx) - a^(2) y = 0

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0

Consider the equation x^(y)=e^(x-y) What is (d^(2)y)/(dx^(2)) at x=1 equal to ?

If y=e^(7x) +e^(-7x) , show that (d^(2)y)/(dx^(2))= 49y .

If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=

If y=e^-x cos x , show that (d^2y)/(dx^2)= 2e^-x sin x