Home
Class 12
MATHS
the least positive value of x satisfying...

the least positive value of `x` satisfying `(sin^2 2x + 4 sin^4 x - 4 sin^2x cos^2x)/(4-sin^2(2x)-4sin^2 x)= 1/9` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the least positive value of x satisfying (sin^2 2x+4sin^4x-4sin^2xcos^2x)/(4-sin^2 2x- 4 sin^2x)=1/9

Find the least positive value of x satisfying (sin^2 2x+4sin^4x-4sin^2xcos^2x)/(4-sin^2 2x- 4 sin^2x)=1/9

Find the least positive value of x satisfying (sin^2 2x+4sin^4x-4sin^2xcos^2x)/(4-sin^2 2x- 4 sin^2x)=1/9

the least positive value of x satisfying ( sin^(2) 2x + 4 sin^(4) x - 4 sin^(2) x cos^(2) x )/( 4-sin^(2) 2x- 4 sin^(2) x) = 1/9 is

The least positive value of x satisfying (sin^(2) 2 x + 4 sin^(4) x - 4 sin^(2) x cos ^(2) x)/(4 - sin ^(2) 2 x - 4 sin^(2) x)= (1)/(9) is

Find the least positive value of x satisfying (sin^(2)2x+4sin^(4)x-4sin^(2)x cos^(2)x)/(4)=(1)/(9)

the least positive value of x satisfying ( sin^(2) 2x + 4 sin^(4) x - 4 sin^(2) x cos^(2) x )/ 4 = 1/9 is

Solev (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .