Home
Class 12
MATHS
If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, sho...

If `tan^(-1)x+tan^(-1)y+tan^(-1)z=pi,` show that x + y + z = xyz.

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

If tan^-1x+tan^-1y+tan^-1z=pi ,show that x+y+z=xyz

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If tan^(-1)x +tan^(-1) y +tan^(-1) z=pi/2 . Show that xy+yz+zx =1.

If tan^(-1) x + tan^(-1)y + tan^(-1)z = pi show that : 1/(xy) + 1/(yz) + 1/(zx) = 1

Prove the followings : If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=xyz .

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz