Home
Class 11
MATHS
If the vectors bar(a)=-2bar(i)+3bar(j)+y...

If the vectors `bar(a)=-2bar(i)+3bar(j)+ybar(k)` and `bar(b)=xbar(i)-6bar(j)+2bar(k)` are collinear,then the value of `x+y` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors bar(i)-2xbar(j)-3ybar(k) and bar(i)+3xbar(j)-2ybar(k) are orthogonal to each other,then the locus of the point (x,y) is

The vectors bar(a)(x)=cos xbar(i)+sin xbar(j),bar(b)(x)=xbar(i)+sin xbar(j) are collinear for :

The vectors bar(i)+4bar(j)+6bar(k),2bar(i)+4bar(j)+3bar(k) and bar(i)+2bar(j)+3bar(k) form

If the vectors bar(a)=2bar(i)+3bar(j)+6bar(k) and bar(b) are collinear and |bar(b)|=21 , then bar(b) equals to

bar(F),=abar(i)+3bar(j)+6bar(k) and , bar(r),=2bar(i)-6bar(j)-12bar(k) .The value of a for which the toque is 0

A point on the line bar(r)=(1-t)(2bar(i)+3bar(j)+4bar(k))+t(3bar(i)-2bar(j)+2bar(k))

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [bar(a)bar(b)bar(c)] is

If there vectors bar(a)=bar(i)+bar(j)+bar(k),bar(b)=bar(i)-2a^(2)bar(j)+bar(a) ,bar(c)=bar(i)+(a+1)bar(j)-abar(k) are linearly dependent vectors then the real 'a' lies in the interval.

The vectors bar(AB)=3bar(i)+4bar(k) and bar(AC)=5bar(i)-2bar(j)+4bar(k) are the sides of a triangle ABC .The length of the median through A

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [[bar(a),bar(b),bar(c)]] is