Home
Class 12
MATHS
Prove that "cos"^(-1)12/13+"sin"^(-1)3/5...

Prove that `"cos"^(-1)12/13+"sin"^(-1)3/5="sin"^(-1)56/65`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: "cos"^(-1)63/65+2"tan"^(-1)1/5="sin"^(-1)3/5

Prove the Statement: "sin"^(-1)12/13-"sin"^(-1) 3/5 ="sin"^(-1) 33/65

Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

Prove that : "cos"^(-1)4/5+"cos"^(-1)12/13="cos"^(-1)33/65

Prove That : "cos"^(-1)4/5+"cos"^(-1)12/13="cos"^(-1)33/65

Prove the following : cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that : sin^-1(12/13) + cos^-1(3/5) = sin^-1(56/65)

Prove that : cos^-1(12/13) + sin^-1(3/5) = cos^-1(33/65)

Prove the following: cos^(-1)((12)/(13))+sin^(-1)(3/5)=sin^(-1)((56)/(65))