Home
Class 12
MATHS
sin^-1(sqrt((x-q)/(p-q)))=cos^-1(sqrt((p...

`sin^-1(sqrt((x-q)/(p-q)))=cos^-1(sqrt((p-x)/(p-q)))=cot^-1(sqrt((p-x)/(x-q)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sin^(-1)sqrt(frac[x-q][p-q])=cos^(-1)sqrt(frac[p-x][p-q])=cot^(-1)sqrt(frac[p-x][x-q])

int dx/((x-p)sqrt((x-p)(x-q)) =

sqrt(x^(p-q))sqrt(x^(q-r))sqrt(x^(r-p))=1

int (dx)/((x-p)sqrt((x-p)(x-q)))

Evaluate: int(dx)/((x-p)sqrt((x-p)(x-q)))

Evaluate: int(dx)/((x-p)sqrt((x-p)(x-q)))

Evaluate: int(dx)/((x-p)sqrt((x-p)(x-q)))

Evaluate: int(dx)/((x-p)sqrt((x-p)(x-q)))

If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/(4)"than :"q=

If cos^(-1) sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1) sqrt(1-q)=(3pi)/(4) , then the value of q is -