Home
Class 12
MATHS
If xy=1+a^2 then show that tan^-1(1/(a+x...

If `xy=1+a^2` then show that `tan^-1(1/(a+x))+tan^-1(1/(a+y))=tan^-1(1/a)`, `x+y+2a!=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If xy=1 + a^(2) then show that tan^(-1) ""(1)/(a+x)+tan ^(-1) ""(1)/(a+y)=tan ^(-1)""(1)/(a) , x+y+2a ne 0

If xy = 1 + a^2 then show that, tan^(-1) [1/(a + x)]+tan^(-1) [1/(a+y)] = tan^(-1)[1/a],x + y + 2a ne 0 .

If xy =1 +a^(2) , show that tan ^(-1) ""(1)/(a+x) +tan^-1"" 1/(a+y) = tan ^(-1) ""(1)/(a) , ( x+ y + 2a) ne 0

show that: Tan^-1x+tan^-1y = tan^-1(frac{x+y}{1-xy})

Prove that tan^(-1)(1/(x+y))+tan^(-1)(y/(x^2+xy+1) )= cot^(-1)x .

tan^-1 x - tan^-1 y= tan^-1 (frac{x-y}{1+xy} .

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

tan ^(-1)((1)/(x+y))+tan ^(-1)((y)/(x^(2)+x y+1))=

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1