Home
Class 12
MATHS
If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] ...

If `A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)]` , show that `a d j\ A=3A^T` .

Promotional Banner

Similar Questions

Explore conceptually related problems

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T . Also find A^-1 .

If A=[[-1,-2,-2],[2,1,-2],[2,-2,1]], show that 3adjA=A^T.

Find the adjoint of the matrix A=[(-1,-2,-2), (2, 1,-2) ,(2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adjA=3A^T Also find A^-1

Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1,-2), (2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .

Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1,-2), (2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .

If A=(1)/(3){:[(-1,2,-2),(-2,1,2),(2,2,1)] show that "AA"^(T)=I .

If A=1/3({:(-1,2,-2),(-2,1,2),(2,2,1):}) , show that "AA"^(T)=I_(3) .

IF 3A=[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A^-1=A' .