Home
Class 12
MATHS
ss The locus of (h, k s2V2The perpendicu...

ss The locus of (h, k s2V2The perpendiculars drawn fromn the centre of a hyperbola--_-uponand normal at any point of the hyperbola meet them in Q and R. Find the locuR.

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the foot of perpendicular drawn from the centre of the hyperbola x^(2)-y^(2)=25 to its normal.

The locus of the foot of the perpendicular drawn from the origin to any tangent to the hyperbola (x^(2))/(36)-(y^(2))/(16)=1 is

Let 'p' be the perpendicular distance from the centre C of the hyperbola x^2/a^2-y^2/b^2=1 to the tangent drawn at a point R on the hyperbola. If S & S' are the two foci of the hyperbola, then show that (RS + RS')^2 = 4 a^2(1+b^2/p^2) .

Let 'p' be the perpendicular distance from the centre C of the hyperbola x^2/a^2-y^2/b^2=1 to the tangent drawn at a point R on the hyperbola. If S & S' are the two foci of the hyperbola, then show that (RS + RS')^2 = 4 a^2(1+b^2/p^2).

Let 'p' be the perpendicular distance from the centre C of the hyperbola x^2/a^2-y^2/b^2=1 to the tangent drawn at a point R on the hyperbola. If S & S' are the two foci of the hyperbola, then show that (RS + RS')^2 = 4 a^2(1+b^2/p^2) .

Let 'p' be the perpendicular distance from the centre C of the hyperbola x^2/a^2-y^2/b^2=1 to the tangent drawn at a point R on the hyperbola. If S & S' are the two foci of the hyperbola, then show that (RS + RS')^2 = 4 a^2(1+b^2/p^2) .

The locus of the foot of perpendicular from my focus of a hyperbola upon any tangent to the hyperbola is the auxiliary circle of the hyperbola. Consider the foci of a hyperbola as (-3, -2) and (5,6) and the foot of perpendicular from the focus (5, 6) upon a tangent to the hyperbola as (2, 5). The point of contact of the tangent with the hyperbola is

The locus of the foot of perpendicular from my focus of a hyperbola upon any tangent to the hyperbola is the auxiliary circle of the hyperbola. Consider the foci of a hyperbola as (-3, -2) and (5,6) and the foot of perpendicular from the focus (5, 6) upon a tangent to the hyperbola as (2, 5). The point of contact of the tangent with the hyperbola is