Home
Class 12
MATHS
lim(x-gtoo)(a^x)/(a^x+1)(a gt0)...

`lim_(x-gtoo)(a^x)/(a^x+1)(a gt0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the L .Hospital rule find limits of the following functions : lim_(xtooo) (a^(1//x)-1)x( a gt 0),

Compute "Lt"_(x to0)(a^x-1)/(b^x-1),(a gt0,bgt0,bne1)

Evaluate: lim_(x->oo)x(tan^(-1)((x+1)/(x+4))-pi/4)

Evaluate: lim_(x->oo)x(tan^(-1)((x+1)/(x+4))-pi/4)

(i) lim_(x to 0) (a^(x) - 1)/(log_(a)(1 + x)), a gt 0 (ii) lim__(x to 0) (In (X + a)- In a)/(e^(2x) - 1) (ii) lim_(x to (pi)/(4)) (In(tanx))/(1 - cotx)

(i) lim_(x to 0) (a^(x) - 1)/(log_(a)(1 + x)), a gt 0 (ii) lim__(x to 0) (In (X + a)- In a)/(e^(2x) - 1) (ii) lim_(x to (pi)/(4)) (In(tanx))/(1 - cotx)

lim_(x-gt0) (e^(3x)-1)/(log(1+5x))

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

If lim_(x->a)(a^x-x^a)/(x^x-a^a)=-1 and a >0, then find the value of a.