Home
Class 11
MATHS
If ((1 +i)/(1 -i))^(x) =1, then (A) x=2n...

If `((1 +i)/(1 -i))^(x) =1`, then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n` in`N.

Promotional Banner

Similar Questions

Explore conceptually related problems

If ((1+i)/(1-i))^(x)=1 AA n in N is (i) x = 2n+1 (ii) x =4n (iii) x=2n (iv) x=4n+1

If ((1+i)/(1-i))^x=1 then (A) x=2n+1 , where n is any positive ineger (B) x=4n , where n is any positive integer (C) x=2n where n is any positive integer (D) x=4n+1 where n is any positive integer

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If cos^2x+cos^2 2x+cos^2 3x=1 then (a) x=(2n+1)pi/4,\ n in I (b) x=(2n+1)pi/2,\ n in I (c) x=npi+-\ pi/6,\ n in I (d) none of these

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)

ifint(dx)/(x^2(x^n+1)^(((n-1)/n)) )=-[f(x)]^(1/n)+c ,t h e nf(x)i s (a) (1+x^n) (b) 1+x^(-1) (c) x^n+x^(-n) (d) none of these

ifint(dx)/(x^2(x^n+1)^(((n-1)/n)) )=-[f(x)]^(1/n)+c ,t h e nf(x)i s (a) (1+x^n) (b) 1+x^(-1) (c) x^n+x^(-n) (d) none of these