Home
Class 12
MATHS
Mean value Theorem f (a +h ) =f (...

Mean value Theorem `f (a +h ) =f (a ) +hf '(a +theta h ) ` में
यदि `(IF) a=2,h=1` एवं `f(x)=(1)/(x)` तो `theta ` का मान निकाले

Promotional Banner

Similar Questions

Explore conceptually related problems

In the mean value theorem f(a+h)=f(a)+hf'(a+theta h) ( 0 lt theta lt 1) , if f(x)=sqrt(x), a=1, h=3 , then the value of theta is -

In the mean value theorem, f(a+h)=f(a)+hf'(a+theta h) (0 lt theta lt 1), find theta when f(x)=sqrt(x), a=1 and h=3.

If f(x+h) =f(x)+hf'(x+theta h) , find theta , given x=-a, h=2a and f(x) =root(3)(x) .

In the following Lagrange's mean value theorem, f(a+h)-f(a)=hf'(a+theta h), 0 lt theta lt 1 If f(x)=(1)/(3) x^(3)-(3)/(2) x^(2)+2x, a=0 and h=3 " find " theta .

If 2sin3 theta =1 , then value of theta is: यदि 2sin3 theta =1 है, तो theta का मान क्या होगा ?

In the mean value theorem, f(x+h)=f(x)+hf'(x+theta h)(0 lt theta lt 1), if f(x)=e^(x) , then show that the value of theta is independent of x.

Compute the value of theta the first mean value theorem f(x+h) =f(x) + hf'(x+theta h) if f(x) = ax^(2) + bx + c

Applying Largrange's mean value theorem for a suitable function f (x) in [0,h], we have f (h) =f (0) + hf'(thetah) , 0 lt theta lt 1. Then for f (x) = cos x, the vlaue of lim _( h to 0 ^(+)) theta is

Applying Lagrange's mean value theorem for a suitable function f(x) in [0, h], we have f(h)=f(0)+hf'(thetah),0 lt theta lt1 . Then for f(x)=cosx , the value of underset(h to0+)lim theta is-

Applying Lagrange's Mean Value Theorem for a suitable function f(x) in [0, h], we have f(h) = f(0) + hf'(thetah), 0ltthetalt1 . Then for f(x) = cos x, the value of underset(hrarr0^+)(limtheta) is