Home
Class 11
MATHS
Prove that 1/(sin^6x+cos^6x)=(sec^2x+cos...

Prove that `1/(sin^6x+cos^6x)=(sec^2x+cosec^2x)/((tanx-cotx)^2+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1)/(sin^(6)x+cos^(6)x)=(sec^(2)x+cos ec^(2)x)/((tan x-cot x)^(2)+1)

Prove that (1)/(sin^(6)x+cos^(6)x)=(sec^(2)x+cos ec^(2)x)/((tan x-cot x)^(2)+1)

Prove that- sin2x(tanx+cotx)=2

Prove that: (1+sin2x-cos2x)/(1+sin2x+cos2x)=tanx

Prove that: (sin2x)/(1+cos2x)=tanx

Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .

Prove that , (sin2x)/(1+cos2x)=tanx

Show that 3(sin^4x+cos^4x)-2(sin^6x+cos^6x)=1 .

Prove that, sin^(6)x + cos^(6)x = 1-3/4 sin^(2) 2x.

Prove that: cos^2 2x-cos^2 6x= sin4x sin8x