Home
Class 12
MATHS
Let A=[1 2 2 2 1 2 2 2 1] . Then A^2-4A...

Let `A=[1 2 2 2 1 2 2 2 1]` . Then `A^2-4A-5I_3=O` b. `A^(-1)=1/5(A-4I_3)` c. `A^3` is not invertible d. `A^2` is invertible

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,2,2),(2,1,2),(2,2,1)] then (A) A^-1= 1/5(A-4I_3) (B) A^2-4A-5I_3=0 (C) A^2 is invertible (D) A^3 is non invertible

A=[[1,2,2],[2,1,2],[2,2,1]] , then show that A^2-4A=5I_3

Let A=[[4,2],[-1,1]] .Then (A-2I)(A-3I) is equal to

Is ((1,2),(3,4)) invertible, justify ?

If A=[(2,-1),(-1,2)] , then show that A^(2) -4A +3I=O .

f:{1,2,3,4}to{5} defined by f={(1,5),(2,5),(3,5),(4,5)} . Does the function is invertible?

If [(1,a,2),(1,2,5),(2,1,1)] is non invertible then a= (A) 2 (B) 1 (C) 0 (D) -1

If [(1,a,2),(1,2,5),(2,1,1)] is non invertible then a= (A) 2 (B) 1 (C) 0 (D) -1

" 2.Let "A=[[1,0,2],[2,0,1],[1,1,2]]," then "(det((A-I)^(3)-4A))/(5)" is "

Let A=[1 4 2 3]&A^4-4A^3-5A^2+2I=lambdaI (' I ' is the unit matrix of order 2), then find lambda . 0 (2) 1 (3) 2 (4) -2