Home
Class 12
MATHS
Let O be the centre of a regular hexagon...

Let `O` be the centre of a regular hexagon `A B C D E F` . Find the sum of the vectors ` vec O A , vec O B , vec O C , vec O D , vec O Ea n d vec O F` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be the centre of a regular hexagon ABCDEF. Find the sum of the vectors vec OA,vec OB,vec OC,vec OD,vec OE and vec OF .

Lẹt 0 be the centre of the regular hexagon ABCDEF. Find the sum of the vectors 'vec(O A)+vec(O B)+vec(O C)+vec(O D)+vec(O E)+vec(O F)'

Given a regular hexagon ABCDEF with centre o,show that vec OB-vec OA=vec OC-vec OD

In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ vec C D=c\ T h e n\ vec A E=

In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ Cvec D=vecC.T h e n\ vec A E=

If vec a ,\ vec b are the vectors forming consecutive sides of a regular of a regular hexagon A B C D E F ,\ then the vecrtor representing side C D is a. vec a+ vec b b. vec a- vec b c. vec b- vec a d. -( vec a+ vec b)

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot