Home
Class 12
MATHS
[lim(x rarr0)(1)/(x)[int(y)^(c)e^(sin^(2...

[lim_(x rarr0)(1)/(x)[int_(y)^(c)e^(sin^(2)t)dt-int_(x+y)^(c)e^(sin^(2)t)dt]" is equal to "],[" [where "c" is constant] "]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) [int_(y)^(a) e^(sin^(2)t) dt - int_(x + y)^(a) e^(sin^(2)t) dt] div x is equal to :

lim_(x rarr0)((1)/(x^(5))int_(0)^(x)e^(-t^(2))dt-(1)/(x^(4))+(1)/(3x^(2)))

lim_(x rarr0)x sin((1)/(x^(2)))

Lim_(x rarr0)int_(0)^(x)(sin^(2)u du)/(sin x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)((int_(0)^(x)(sin^(3)xdx))/(x^(4)))

lim_(x rarr0)(int_(0)^(1)sin t^(2)dt)/(x(1-cos x)) equals

lim_(x->0) 1/x [int_y ^a)e^(sin^2t) dt-int_(x+y) ^a)e^(sin^2t)dt] is equal to (a) e^(sin^(2)y) (b) sin2ye^(sin^(2)y (c) 0 (d) none of these