Home
Class 12
MATHS
यदि f(x)=x^(2)+2bx+2c^(2) और g(x)=-x^(2)...

यदि `f(x)=x^(2)+2bx+2c^(2)` और `g(x)=-x^(2)-2cx+b^(2)`, इस प्रकार है कि min `f(x)gt"max"g(x)`, तो b और c के बीच संबंध है

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)+2bx+2c^(2)g(x)=-x^(2)-2cx+b^(2) and min f(x)>max g(x) then

If f(x)=x^(2)+2bx+2c^(2)and g(x)=-x^(2)-2cx+b^(2), such that minf(x)gtmaxg(x), then the relation between b and c, is

If f(x) = x^2+2bx+2c^2, g(x)=-x^2-2cx+b^2 , such that min f(x)gytmaxg(x) ,then

If (x)=x^(2)+2bx+2c^(2) and g(x)=-x^(2)-2cx+b^(2) such that min f(x)>max g(x), then the relation between a and c is (1) Non real value of b and c(2)0 |b|sqrt(2)

f(x)=min({x,x^(2)} and g(x)=max{x,x^(2)}

f(x)=min({x,x^(2)} and g(x)=max{x,x^(2)}

If f(x)=x^2+2bx=2c^2 and g(x)=-x^2-2cx+b^2 are such that min f(x)gtmaxg(x), then the relation between b and c is