Home
Class 12
MATHS
If (at^(2) , 2at) be the coordinate of a...

If `(at^(2) , 2at)` be the coordinate of an extremity of a focal chord of the parabola `y^(2) =4ax,` then the length of the chord is-

Promotional Banner

Similar Questions

Explore conceptually related problems

If (at^(2) , 2at ) be the coordinates of an extremity of a focal chord of the parabola y^(2) = 4ax , then show that the length of the chord is a(t+(1)/(t))^(2) .

If the point (at^(2),2at) be the extremity of a focal chord of parabola y^(2)=4ax then show that the length of the focal chord is a(t+(1)/(t))^(2)

If t is the parameter for one end of a focal chord of the parabola y^(2)=4ax, then its length is

If t is the parameter for one end of a focal chord of the parabola y^(2)=4ax, then its length is :

The point (1,2) is one extremity of focal chord of parabola y^(2)=4x .The length of this focal chord is

If t is a parameter of one end of a focal chord of the parabola y^(2) =4ax then its length is

If the point ( at^2,2at ) be the extremity of a focal chord of parabola y^2=4ax then show that the length of the focal chord is a(t+t/1)^2 .

If the point ( at^2,2at ) be the extremity of a focal chord of parabola y^2=4ax then show that the length of the focal chord is a(t+t/1)^2 .

If the point ( at^2,2at ) be the extremity of a focal chord of parabola y^2=4ax then show that the length of the focal chord is a(t+1/t)^2 .

If the point ( at^2,2at ) be the extremity of a focal chord of parabola y^2=4ax then show that the length of the focal chord is a(t+1/t)^2 .