Home
Class 12
MATHS
यदि sin^(-1) x + tan^(-1) x = (pi)/(2), ...

यदि `sin^(-1) x + tan^(-1) x = (pi)/(2)`, तो सिद्ध कीजिए कि - `2x^(2) = sqrt(5) - 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

If sin^(-1)x+tan^(-1)((1)/(2))=(pi)/(2) then x=

If sin^(-1)x+tan^(-1)x=(pi)/(2) , prove that : 2x^(2)+1=sqrt(5)

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

यदि triangleABC में (If इन triangleABC), a = (1)/(sqrt(6)-sqrt(2)), b = (1)/(sqrt(6)+sqrt(2)), C = 60^(@) तो सिद्ध कीजिए कि (Prove that) c = (sqrt(4))/(2) .

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is