Home
Class 11
MATHS
If A + B + C = 180^(@), prove that sin...

If A + B + C = `180^(@)`, prove that
`sin^(2)A + sin^(2)B + sin^(2)`C = 2 + 2 cos A cos B cos C

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

If A+B+C=180^(@) , prove that: "sin"^(2) A+"sin"^(2) B+"sin"^(2) C=2(1+cos A cos B cos C) .

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B+sin^2 C=2 (1+cos A cos B cos C) .

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B-sin^2 C=2 sin A sin B cos C .

If A + B + C =180^@ , prove that : sin^2 A- sin^2 B+ sin^2 C=2 sin A cos B sinC .

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If A+B+C= 180^(@) , prove that: (i) "sin"^(2)+"sin"^(2)B-"sin"^(2)C=2 "sin"A sin B cos C (ii) "sin"^(2)A-"sin"^(2)B+"sin"^(2) C=2 sin Acos B sin C.

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C