Home
Class 12
MATHS
The maximum value of the function f(x)=...

The maximum value of the function `f(x)=3x^(3)-18x^(2)+27x-40` on the set `S={x in R: x^(2)+30 le 11x}` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum value of the function f(x)=5+9x-18x^(2)

The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the set a={x|x^(2)+20le9x} is

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the absolute maximum and absolute minimum values of the function f(x) = 2x^(3) - 3x^(2) + 2 "in " -(1)/(2) le x le 4

The maximum value of f(x) = 2x^(3) -21 x^(2) +36x +20 in 0 le x le 2

Find the maximum and minimum values of the function : f(x)=2x^(3)-15x^(2)+36x+11.