Home
Class 12
MATHS
If int(a)^(b)f(x)dx=int(a)^(b)phi(x)dx, ...

If `int_(a)^(b)f(x)dx=int_(a)^(b)phi(x)dx`, then-

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a)^(b)f(x)dx=int_(b)^(a)f(x)dx .

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a

If f(x)=f(a+b-x) for all x in[a,b] and int_(a)^(b) xf(x) dx=k int_(a)^(b) f(x) dx , then the value of k, is

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx and hence evaluate int_((pi)/(6))^((pi)/(3))(1)/(1+sqrt(tanx))dx.

Prove that, int_(a)^(b)f(a+b-x)dx=int_(a)^(b)f(x)dx .

Property 4: If f(x) is a comtinuous function on [a;b] then int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx