Home
Class 12
MATHS
If y = (lot (e) x)/(x) and z = log (e) x...

If `y = (lot _(e) x)/(x) and z = log _(e) x,` then ` (d ^(2) y)/(dz^(2)) + (dy)/(dz) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sin (log _(e) x) then (x ^(2) (d ^(2) y)/(dx ^(2)) +x (dy )/(dx)=

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y = e^(log_(e) [1 + x + x^(2) + …]) , then (dy)/(dx) =

If y=sin x^(@) and z=log_(10)x , then the value of ( dy)/(dz) is -

If y=x+e ^(x), then ((d^(2)y)/(dy ^(2)))_(x = ln 2) is :

If y=x+e ^(x), then ((d^(2)y)/(dy ^(2)))_(x = ln 2) is :