Home
Class 12
MATHS
If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] then ...

If `A=[(2,-1,1),(-1,2,-1),(1,-1,2)]` then `A^(2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

The inverse of the matrix [(1,1,1),(1,0,2),(3,1,1)] is a) (1)/(4)[(-2,0,2),(5,-1,2),(1,-1,-2)] b) (1)/(4)[(-2,0,2),(5,-2,-1),(1,2,-1)] c) (1)/(4)[(-2,0,2),(2,5,-1),(-2,-1,1)] d) (1)/(4)[(-2,0,2),(5,-1,1),(1,-2,-1)]

The x-coordinates of the vertices of a square of unit area are the roots of the equation x^(2)-3|x|+2=0 .The y -coordinates of the vertices are the roots of the equation y^(2)-3y+2=0. Then the possible vertices of the square is/are (1,1),(2,1),(2,2),(1,2)(-1,1),(-1,-1),(1,2),(2,2)(-2,1),(-1,-1),(-1,2),(-2,2)

Solve: [(x,1,2)][(1,0,1),(-1,1,1),(2,1,2)][(-1),(1),(2)]=0

If P=[(i,0,-i),(0,-i,i),(-i,i,0)] and Q=[(-i,i),(0,0),(i,-i)] then PQ is equal to (A) [(-2,2),(1,-1),(1,-1)] (B) [(2,-2),(-1,1),(-1,1)] (C) [(2,2),(-1,1)] (D) [(1,0,0),(0,1,0),(0,0,1)]

If P=[(i,0,-i),(0,-i,i),(-i,i,0)] and Q=[(-i,i),(0,0),(i,-i)] then PQ is equal to (A) [(-2,2),(1,-1),(1,-1)] (B) [(2,-2),(-1,-1),(-1,1)] (C) [(2,2),(-1,1)] (D) [(1,0,0),(0,1,0),(0,0,1)]

Find the rank of A=[[1,2,-1,2],[2,2,-1,1],[-1,-1,1,-1],[2,1,-1,2]]

A=[(1,2),(2,1)], then adjoint of A is equal to (A) [(1,-2),(-2,1)] (B) [(2,1),(2,1)] (C) [(1,-2),(-2,1)] (D) [(-1,2),(2,-1)]