Home
Class 12
MATHS
Tangents drawn from (2, 0) to the circle...

Tangents drawn from `(2, 0)` to the circle `x^2 + y^2 = 1` touch the circle at `A and B`. Then (A) `A-= (1/2, sqrt(3)/2)`, B -= (-1/2, - sqrt(3)/2)` (B) `A-= (- 1/2, (-sqrt(3)/2)` , B -= (1/2, sqrt(3)/2)` (C) `A-= (1/2, sqrt(3)/2)`, B-= (1/2, - sqrt(3)/2)`` (D) `A-= (1/2, - sqrt(3)/2), B-= (1/2, sqrt(3)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of "sin"(31)/(3)pi is a) (sqrt3)/(2) b) (1)/(sqrt2) c) (-sqrt3)/(2) d) (-1)/(sqrt2)

Evaluate : Find the value of sqrt( 3 + sqrt(5)) a ) sqrt(3)/2 + 1/sqrt(2) b ) sqrt(3)/2 - 1/2 c ) sqrt(5)/2 - 1/sqrt(2) d ) sqrt(5)/sqrt(2) + 1/sqrt(2)

If a = (1)/(2 - sqrt(3)) , b = (1)/(2 + sqrt(3)) , find the value of ((a + b)/(a -b))^(2) .

The value of sin(1/4sin^(-1)(sqrt(63))/8) is 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

(1)/(sqrt(9)-sqrt(8)) is equal to: 3+2sqrt(2)(b)(1)/(3+2sqrt(2)) (c) 3-2sqrt(2)(d)(3)/(2)-sqrt(2)

Let A=[[cos theta,-sin theta],[sin theta,cos theta]] Find the value of A^(-50) at theta=(pi)/2 (A) [[-(sqrt(3))/(2),-(1)/(2)],[-(1)/(2),(sqrt(3))/(2)]] (B) [[(sqrt(3))/(2),(1)/(2)],[(-1)/(2),(sqrt(3))/(2)]] (C) [[-(sqrt(3))/(2),(1)/(2)],[(1)/(2),(sqrt(3))/(2)]] (D) [[(1)/(2),(sqrt(3))/(2)],[(sqrt(3))/(2),(-1)/(2)]]