Home
Class 12
MATHS
If the roots of the equation c^(2)x^(2)-...

If the roots of the equation `c^(2)x^(2)- c(a+b)x + ab =0` are sin A, sin B where A, B and C are the angles and a, b, c are the opposite sides of a triangle, then the triangle is :
(i) right angled
(ii) acute angled
(iii) obtuse angled
(iv) `sin A + cos A = (a+b)/(c )`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the sines of the angles A and B of a triangle ABC satisfy the equation c^2x^2-c(a+b)x+a b=0 , then the triangle a)acute angled b)right angled c)obtuse angled d) sinA+cosA = ((a+b))/c

In a right angle triangle ABC, right angle is at B ,If tan A=sqrt(3) , then find the value of (i) sin A cos C+ cos A sin C "

A, B and C are interior angles of a triangle ABC, then sin ((B + C)/(2)) =

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

In Delta ABC , if Sin A and sin B are the roots of the equation c^2x^2-c(a+b)x+ab=0, then sin C=

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to