Home
Class 12
MATHS
Let O be the centre of a regular pentago...

Let O be the centre of a regular pentagon ABCDE and `vec(OA) = veca`, then `vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA)` is equals:

Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

In a regular hexagon ABCDEF, vec(AB)=a, vec(BC)=b and vec(CD) = c. Then, vec(AE) =

If A, B, C, D, E are the.vertices of a regular pentagon, find the vector sum vec(AB)+ vec(BC)+ vec(CD)+vec (DE)+vec(EA) .

Let O be the centre of a regular hexagon ABCDEF. Find the sum of the vectors vec OA,vec OB,vec OC,vec OD,vec OE and vec OF .

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=