Home
Class 12
MATHS
Let f(x, y) = sin (2x - y) cos y + cos (...

Let `f(x, y) = sin (2x - y) cos y + cos (2x - y) sin y` for all `x,y in R.` The value of `Lim_(x->0) (1 + tan x - x )^(1/(x^2 f(x,y)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x,y)=sin(2x-y)cos y+cos(2x-y)sin y for all x,y in R. The value of lim_(x rarr0)(1+tan x-x)^((1)/(x^(2)f(x,y))) is equal to

the value of lim_(x->y) (sin^2x-sin^2y)/(x^2-y^2) equals

the value of lim_(x->y) (sin^2x-sin^2y)/(x^2-y^2) equals

the value of lim_(x->y) (sin^2x-sin^2y)/(x^2-y^2) equals

the value of lim_(x->y) (sin^2x-sin^2y)/(x^2-y^2) equals

Let sin x + sin y = cos x + cos y for all x, y in R . What is tan(x/2 + y/2) equal to?

If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the value of lim_(x->0)(2^(f(tan x)-2^f(sin x)))/(x^2*f(sin x))

If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1 , then find the value of lim_(x->0)(2^(f(tan x)-2^f(sin x)))/(x^2*f(sin x))

If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1 , then find the value of lim_(x->0)(2^(f(tan x)-2^f(sin x)))/(x^2*f(sin x))

(sin x - sin y)/( cos x + cos y) = tan ""(x-y)/(2)