Home
Class 10
MATHS
((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))=(cot(A...

((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))=(cot(A)/(2)+cot(B)/(2)+cot(C)/(2))/(cot A+cot B+cot C)

Promotional Banner

Similar Questions

Explore conceptually related problems

r("cot"(A)/(2)"cot"(B)/(2)"cot"(C)/(2))=

r^(2) cot ""(A)/(2) cot ""(B)/(2) cot ""(C)/(2)

cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=cot((A)/(2))cot((B)/(2))cot((C)/(2))

In Delta ABC , if a=3 , b=4,c=6 then ("cot" (A)/(2)+"cot" (B)/(2)+ "cot" ( C)/(2))/("cot" A + "cot" B + "cot" C)=

a^(2)cot A+b^(2)cot B+c^(2)cot C=

In a triangle ABC,prove that (cot((A)/(2))+cot((B)/(2))+cot((C)/(2)))/(cot A+cot B+cot(C))=((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))

In Delta ABC, cot ""(A)/(2) +cot""(B)/(2) + cot""(C)/(2)=

a^(2) cot A+ b^(2) cot B+ c ^(2) cot C =

if A+B+C=pi prove that cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=cot((A)/(2))xx cot((B)/(2))xx cot((C)/(2))

r ( cot "" ( B) /(2) + cot "" ( C) /(2)) =