Home
Class 11
MATHS
If f(x)=1+x+x^(2)+..... for |x|lt1 then...

If `f(x)=1+x+x^(2)+.....` for `|x|lt1` then show that `f^(-1)(x)=(x-1)/(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 1 + x + x^(2) + …… for |x| lt 1 then show that f^(-1)(x) = (x-1)/(x) .

If f(x) = log ((1-x)/(1+x)) -1 lt x lt 1 then show that f(-x) = -f (x)

If f(x)=(x-1)/(x+1) ,then show that f(-1/x)=-1/f(x) .

If f(x)=(x-1)/(x+1) , then show that f(-1/x)=-1/f(x) .

If f(x)= (x-1)/(x+1) , Then show that f(-(1)/(x))= (-1)/(f(x))

If f(x) = (x-1)/(x+1) , x ne -1 then show that f(f(x)) =(-1)/x

If f(x)=log((1-x)/(1+x)),-1ltxlt1 , then show that : f(-x)=-f(x) .

If f(x)=(x-1)/(x+1), then show that f((1)/(x))=-f(x) (ii) f(-(1)/(x))=(1)/(f(x))