Home
Class 11
MATHS
1^(2) + 2^(2) + 3^(2) + …+ 10^(2) is :...

`1^(2) + 2^(2) + 3^(2) + …+ 10^(2)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......

If 1^(2) + 2^(2) + 3^(3)+ 4^(2) + …….. + 10^(2) = 385 then find the value of 2^(2) + 4^(2) + 6^(2) + ………. + 20^(2)

If 2^(10) + 2^(9) * 3^(1) + 2 ^(8) * 3^(2) + …. + 2 * 3^(9) + 3^(10) = S - 2^(11) , then S is equal to :

The sum (3 xx 1^(3))/(1^(2)) + (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) +2^(2) + 3^(2))... upto 10th term is

The sum up to 10 terms of the series (3 xx 1^(3))/(1^(2)) + (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) + 2^(2) + 3^(2)) + ....

Given that (1^(2)+2^(2)+3^(2)+......+10^(2))=385, the value of (2^(2)+4^(2)+6^(2)+....+20^(2)) is equal to

Given that 1^(2)+2^(2)+3^(2)+dot backslash+10^(2)=385,backslash then find the value of 2^(2)+4^(2)+6^(2)+backslash backslash+20^(2)

I. x^(2)/2 + x - 1/2 = 1 II. 3y^(2) - 10y + 8 = y^(2) + 2y - 10

Observe the following pattern 1^(2)=(1)/(6)[1x(1+1)x(2x1+1)]1^(2)+2^(2)=(1)/(6)[2x(2+1)x(2x2+1)]1^(2)+2^(2)+3^(2)=(1)/(6)[3x(3+1)x(2x3+1)]1^(2)+2^(2)+3^(2)+4^(2)=(1)/(6)[4x(4+1)x(2x4+1)] and find the values of each of the following 1^(2)+2^(2)+3^(2)+4^(2)++10^(2)5^(2)+6^(2)+7^(2)+8^(2)+9^(2)+10^(2)+11^(2)+12^(2)