Home
Class 12
MATHS
Let "f(x)"|{:(pi^n,sinpix,cospix),((-1)^...

Let `"f(x)"|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}|`
Then value or `d^n/(dx^n)["f(x)"]"at "x=1" is "`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}| , then the value of (d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1 is

If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}| , then the value of (d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1 is

If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^3)| , then show that d^n/dx^n [f(x)] at x=0 is 0

If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^3)| , then show that d^n/dx^n [f(x)] at x=0 is 0

if f(x)=|{:(x^(n),,n!,,2),(cos x,,cos.(npi)/(2),,4),(sin x,,sin .(npi)/(2),,8):}|, then find the value of (d^(n))/(dx^(n)) [f(x)]_(x=0) .(n in z).

if =|{:(x^(n),,n!,,2),(cos x,,"cos"(npi)/(2),,4),(sin x,,"sin" (npi)/(2),,8):}|, then find the value of (d^(n))/(dx^(n)) [f(x)]_(x=0) (n in z)

if =|{:(x^(n),,n!,,2),(cos x,,cos.(npi)/(2),,4),(sin x,,sin .(npi)/(2),,8):}|, then find the value of (d^(n))/(dx^(n)) [f(x)]_(x=0) .(n in z).

if =|{:(x^(n),,n!,,2),(cos x,,cos.(npi)/(2),,4),(sin x,,sin .(npi)/(2),,8):}|, then find the value of (d^(n))/(dx^(n)) [f(x)]_(x=0) .(n in z).