Home
Class 12
MATHS
If vec a , vec b , vec c , vec d are n...

If ` vec a , vec b , vec c , vec d` are non-zero, non collinear vectors and if `( vec ax vec b)x( vec cx vec d)dot( vec ax vec d)=0` , then which of the following is always true. ` vec a , vec b , vec c , vec d` are necessarily coplanar either ` vec a` or ` vec d` must lie in the plane of ` vec b` and ` vec c` either ` vec b` or ` vec c` must lie in plane of ` vec a` and ` vec d` either ` vec a` or ` vec b` must lie in plane of ` vec c` and ` vec d`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec c , vec d are non-zero, non collinear vectors and if ( vec aX vec b)X( vec cX vec d)dot( vec aXvec d)=0 , then which of the following is always true. (a) vec a , vec b , vec c , vec d are necessarily coplanar (b) either vec a or vec d must lie in the plane of vec b and vec c (c) either vec b or vec c must lie in plane of vec a and vec d (d) either vec a or vec b must lie in plane of vec c and vec d

If ( vec axx vec b)xx( vec cxx vec d)dot( vec axx vec d)=0 , then which of the following may be true? vec a , vec b , vec ca n d vec d are necessarily coplanar b. vec a lies in the plane of vec ca n d vec d c. vec b lies in the plane of vec aa n d vec d d. vec c lies in the plane of vec aa n d vec d

If ( vec axx vec b)xx( vec cxx vec d)dot( vec axx vec d)=0 , then which of the following may be true? a. vec a , vec b , vec ca n d vec d are necessarily coplanar b. vec a lies in the plane of vec ca n d vec d c. vec b lies in the plane of vec aa n d vec d d. vec c lies in the plane of vec aa n d vec d

If ( vec axx vec b)xx( vec cxx vec d) . ( vec axx vec d)=0 , then which of the following may be true? (a) vec a , vec b , vec ca n d vec d are necessarily coplanar (b) vec a lies in the plane of vec ca n d vec d (c) vec b lies in the plane of vec aa n d vec d (d) vec c lies in the plane of vec aa n d vec d

If (vec a xxvec b)xx(vec c xxvec d)*(vec a xxvec d)=0 then which of the following may be true? vec a,vec b,vec c and vec d are necessarily coplanar b.vec a lies in the plane of vec c and vec d c.vec b lies in the plane of vec a and vec d d.vec c lies in the plane of vec a and vec d

If vec a , vec b , vec c are three non coplanar vectors such that vec adot vec a= vec d vec b= vec ddot vec c=0 , then show that vec d is the null vector.

If vec a , vec b , vec c are three non coplanar vectors such that vec ddot vec a= vec ddot vec b= vec ddot vec c=0, then show that d is the null vector.

If vec a ,\ vec b ,\ vec c are three non coplanar vectors such that vec d dot vec a= vec d dot vec b= vec d dot vec c=0, then show that d is the null vector.

If vec a , vec b , vec c are three non-coplanar vectors and vec d* vec a = vec d* vec b= vec d* vec c= 0 then show that vec d is zero vector.