Home
Class 12
MATHS
The range of the function y=[x^2]-[x]^2 ...

The range of the function `y=[x^2]-[x]^2` `x in [0,2]` (where [] denotes the greatest integer function), is

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of function y=[x^2]=[x]^2,x in [0,2] (where [.] denotes the greatest function), is {0} b. {0,1} c. {1,2} d. {0,1,2}

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

If f(x)=[2x], where [.] denotes the greatest integer function,then

The range of function y=[x^(2)]=[x]^(2),x in[0,2]( where [.] denotes the greatest function),is {0} b.{0,1} c.{1,2} d.{0,1,2}

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If [2sinx]+[cosx]=-3 then the range of the function f(x)=sinx+sqrt3cosx in [0, 2pi] is, (where [.] denotes the greatest integer function)

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is