Home
Class 11
MATHS
If a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+(1)/(5...

If `a_(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+(1)/(5)+ . . . .+(1)/(2^(n)-1)`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(3n) , then

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(3n) , then

Let a_(1),a_(2),a_(3), . . .,a_(n) be an A.P. Statement -1 : (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-1))+ . . .. +(1)/(a_(n)a_(1)) =(2)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+ . . .. +(1)/(a_(n))) Statement -2: a_(r)+a_(n-r+1)=a_(1)+a_(n)" for "1lerlen

Let a_(1),a_(2),a_(3), . . .,a_(n) be an A.P. Statement -1 : (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-1))+ . . .. +(1)/(a_(n)a_(1)) =(2)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+ . . .. +(1)/(a_(n))) Statement -2: a_(r)+a_(n-r+1)=a_(1)+a_(n)" for "1lerlen

Let a_(1)=1,a_(n)=n(a_(n-1)+1 for n=2,3,... where P_(n)=(1+(1)/(a_(1)))(1+(1)/(a_(2)))(1+(1)/(a_(3)))...*(1+(1)/(a_(n))) then Lt_(n rarr oo)P_(n)=

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"...."+(1)/(3n) . Then:

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"...."+(1)/(3n) . Then:

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"...."+(1)/(3n) . Then:

If a_(1), a_(2), a_(3) ,…., a_(n) are the terms of arithmatic progression then prove that (1)/(a_(1)a_(2)) + (1)/(a_(2)a_(3)) + (1)/(a_(3)a_(4)) + ….+ (1)/(a_(n-1) a_(n)) = (n-1)/(a_(1)a_(n))