Home
Class 12
MATHS
Number of integers in the range of f(x)=...

Number of integers in the range of `f(x)=log_e[cos|x|+1/2]`, where [] denotes the greatest ineger finction, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

Find the domain and range of f(x)=log[cos|x|+(1)/(2)], where [.] denotes the greatest integer function.

f(x)=log_([x-1])sin x, where [.1 denotes the greatest integer.

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.