Home
Class 12
MATHS
If I= int(0)^(1)(x)/(8+x^(3))dx then the...

If `I= int_(0)^(1)(x)/(8+x^(3))dx` then the smallest interval is which I less is

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int_0^1 (xdx)/(8+x^3) then the smallest interval in which I lies is (A) (0,1/8) (B) (0,1/9) (C) (0,1/10) (D) (0,1/7)

If I=int_(0)^(1)(1)/(1+x^(8))dx then:

I=int_(0)^(1)((1+x)/(2-x))dx

If I=int_(0)^(1)sqrt(1+x^(3))dx then

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

I=int_(0)^(1)e^(x^(2)-x)dx then

"I=int_(0)^(3)(x^(3)-2x+3)*dx

if I=int_(0)^(1.7)[x^(2)]dx, then I equal is

If I=int_(0)^(2)e^(x^(4))(x-alpha)dx=0 , then alpha lies in the interval

If I=int_(0)^(2)e^(x^(4))(x-alpha)dx=0 , then alpha lies in the interval-