Home
Class 12
MATHS
Statement-1 (Assertion and Statement- 2 ...

Statement-1 (Assertion and Statement- 2 (Reason)
Each of these questions also has four alternative
choices, only one of which is the correct answer. You
have to select the correct choice as given below.
Statement - 1 If mateix `A= [a_(ij)] _(3xx3) , B= [b_(ij)] _(3xx3), ` where ` a_(ij) + a_(ji) = 0 and b_(ij) - b_(ji) = 0` then `A^(4) B^(5)` is non-singular
matrix.
Statement-2 If A is non-singular matrix, then `abs(A) ne 0 .`

Promotional Banner

Similar Questions

Explore conceptually related problems

(Statement1 Assertion and Statement- 2 (Reason) Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Statement - 1 If matrix A= [a_(ij)] _(3xx3) , B= [b_(ij)] _(3xx3), where a_(ij) + a_(ji) = 0 and b_(ij) - b_(ji) = 0 then A^(4) B^(5) is non-singular matrix. Statement-2 If A is non-singular matrix, then abs(A) ne 0 .

(Statement1 Assertion and Statement- 2 (Reason) Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Statement - 1 If matrix A= [a_(ij)] _(3xx3) , B= [b_(ij)] _(3xx3), where a_(ij) + a_(ji) = 0 and b_(ij) - b_(ji) = 0 then A^(4) B^(5) is non-singular matrix. Statement-2 If A is non-singular matrix, then abs(A) ne 0 .

If matrix A = [a_(ij)]_(3xx3), matrix B= [b_(ij)]_(3xx3) where a_(ij) + a_(ij)=0 and b_(ij) - b_(ij) = 0 then A^(4) cdot B^(3) is

If matrix A=[a_(ij)]_(3xx3) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is