Home
Class 12
MATHS
If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi ...

If `tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi` prove that `x+y+z=xyz`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, show that x + y + z = xyz.

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2) then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y+tan^(-1) z=(3pi)/(2) then prove that xy+yz+zx=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.