Home
Class 12
MATHS
Prove that 3tan^-1(1/(2+sqrt3))-tan^-1(1...

Prove that `3tan^-1(1/(2+sqrt3))-tan^-1(1/2)=tan^-1(1/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 3 tan^-1(1/(2+sqrt3)) - tan^-1(1/x) = tan^-1(1/3)

3(tan^(-1)1)/(2+sqrt(3))-(tan^(-1)1)/(2)=(tan^(-1)1)/(3)

If 3tan^(-1)(1/(2+sqrt(3)))-tan^(-1)(1/x)=tan^(-1)(1/3), then x is equal to 1 (b) 2 (c) 3 (d) sqrt(2)

Prove that : 2 tan^-1(1/7) + tan^-1(1/3) = tan^-1(9/13)

Solve : 3 tan^(-1) (1/(2+sqrt(3)))-tan^(-1)(1/x) = tan^(-1) (1/3)

Prove that tan^-1(1/8)+2tan^-1(1/3)+tan^-1(1/57)=pi/4

Prove that tan^-1 (1/2)+tan^-1(2/11)=tan^-1(3/4)

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to