Home
Class 12
MATHS
Prove that: (i)tan^(-1){(sqrt(1+cosx)+s...

Prove that: `(i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2`,

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1) {(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cos x)-sqrt(1-cosx))}=pi/4+x/2

Prove that: tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2,\ if\ pi < x <\3pi/2

If piltxlt2pi then (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))

Show that: tan^(-1)[ (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))] =(pi)/(4)+(x)/(2), x in [0, pi]

int(sqrt(1+cosx))/(1-cosx)dx=

intcot^(-1)sqrt((1+cosx)/(1-cosx))dx=

tan^(-1)(sqrt((1-cosx)/(1+cosx))),0ltxltpi

If piltxlt2pi, prove that (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(x/2+pi/4)dot

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .