Home
Class 12
MATHS
" 2."quad 2tan^(-1)(1/2)" बराबर है "...

" 2."quad 2tan^(-1)(1/2)" बराबर है "

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1) 1+tan ^(-1) 2+tan ^(-1) 3 = pi =2 (tan ^(-1) ""(1)/(2)+tan ^(-1) ""(1)/(3) + tan ^(-1) 1) [ take priencipal value in each case]

Show that 2tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that 2tan^(-1)""(1)/(2)+tan^(-1)""(1)/(7)=tan^(-1)""(31)/(17)

(sec∅ - tan∅)^2 (1 + sin∅)^2 ÷ sin^(2)∅ =? (sec∅ - tan∅)^2 (1 + sin∅)^2 ÷ sin^(2)∅ बराबर है :

((1-tanθ)/(1-cotθ))^2 +1 = ? ((1-tanθ)/(1-cotθ))^2 +1 बराबर है :

For 0^@ 0^@< theta <90^@ के लिए , अगर (sec theta(1-sin theta)(sec theta+tan theta))/((sec theta-tan theta)^2)=(1+k)/(1-k) है तो k बराबर है:

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that : 2tan^-1 (1/2) + tan^-1 (1/7) = tan^-1 (31/17)

Prove that 2tan^(-1)((1)/(2))+ tan^(-1)((1)/(7))= tan^(-1)((31)/(17))