Home
Class 14
MATHS
" यदि "tan^(-1)x+tan^(-1)y+tan^(-1)z=pi"...

" यदि "tan^(-1)x+tan^(-1)y+tan^(-1)z=pi" तो सिद्ध करें "x+y+z=xyz

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, show that x + y + z = xyz.

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

Prove the followings : If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=xyz .

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

if tan ^(-1) x+tan ^(-1) y+tan ^(-1) z=pi prove that x+y+z=xyz

If "tan"^(-1) x +"tan" ^(-1) y +"tan"^(-1)z -pi show that x+y+z=xyz.